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Intermittent dynamics in transient polymer networks under shear: Signs
of self-organized criticality
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In this paper we demonstrate an unusual behavior in the shear-banded flow of a viscoelastic fluid. We report
large and patterned fluctuations in the shear stress in an apparently fluid material undergoing steady shear,
which we interpret as an intermittent and microscopic fracture and self-healing process. The statistical pattern
of the fluctuations is indicative of self-organized criticality, and their magnitude can be directly related to the

constitutive instability that underlies the shear banding.
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Viscoelastic materials are ubiquitous: both natural, such
as the biopolymer networks that constitute the cellular cor-
tex, as well as man made, for example, rheology modifiers
found in foods, pharmaceuticals, and coatings. When such
materials are deformed at rates faster than they can structur-
ally adapt, part of the structure in the quiescent state is bro-
ken down, which in most cases leads to shear thinning. Shear
thinning can, when strong enough, make the flow macro-
scopically unstable, leading to the formation of two, or more,
bands of differing shear rate—a phenomenon called shear
banding [1,2]. In this paper we discuss the appearance of
complex stress fluctuations, with an underlying statistical
pattern, in a viscoelastic fluid under steady shear, which we
interpret as an intermittent fracture. Healing process taking
place around the interface between two shear bands in a vis-
coelastic fluid under steady deformation. A statistical analy-
sis of these stress fluctuations reveals a pattern that seems to
indicate self-organized criticality [3]. Apparently the system
spontaneously reaches a nonequilibrium critical point where
its dynamics become scale invariant. The magnitude of the
stress fluctuations can be directly related to the size of the
metastable loop in the constitutive relation underlying the
flow instability.

Rheological measurements are carried out under strain
rate control on an Anton Paar MCRS501 rheometer in a con-
centric cylinder geometry. The protocols for the velocimetry
measurements, with laser Doppler velocimetry, and the rheo-
logical protocols are described elsewhere [1]. The material
under study is a water-soluble polymer polyethylene oxide
(PEO, of 20 kg/mol) with a hydrophobic sticker (an octade-
cyl alkane) covalently attached to both chain ends (see [1]
for preparation procedure). Dissolved in water at sufficient
concentration (in this paper at 25 g/L unless stated other-
wise), it spontaneously associates into a transient network
[4]. The network is composed of self-assembled micellar
nodes, with a finite lifetime, interconnected by flexible poly-
mer chains. These systems behave as viscoelastic Maxwell
fluids, characterized by a single microscopic relaxation time
7y and plateau modulus G,.
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An interesting feature of these systems is that the relax-
ation time can be tuned with temperature [5] while the pla-
teau modulus is relatively insensitive to temperature (Fig. 1).
The relaxation time shows Arrhenius behavior, i.e., decreases
exponentially with temperature, which is indicative of a first-
order activated process. As stress relaxation primarily occurs
through the dissociation of bridged polymer chains between
micellar nodes, the activation energy for this process (here
~22kyT) can be interpreted as the energy barrier of bringing
a hydrophobic sticker at the chain end of a polymer from its
hydrophobic environment in the micellar node to the sur-
rounding aqueous bulk phase. The plateau modulus is a rep-
resentation of the network topology, i.e., the multiplicity and
number of junction points (nodes), and is relatively insensi-
tive to changes in temperature. This allows us to use tem-
perature as a tuning parameter to illustrate the nontrivial
scaling of the rheological behavior of these transient net-
works with relaxation time.

Under steady shear, the tension on the stickers reduces the
average lifetime of the polymer bridges, thus disrupting the
network structure and producing a severe shear thinning, i.e.,
a viscosity that decreases strongly with applied shear rate.
This makes the flow mechanically unstable [1,6]. The result
is that bands of different shear rate are spontaneously formed
parallel to the flow direction [Figs. 2(a) and 2(b)]—a phe-
nomenon known as shear banding [1,2]. In the low-shear
band the viscosity is high and there are still many junctions,
while in the high-shear band many junctions are broken, re-
sulting in a lower viscosity. A stress plateau (see Fig. 3), the
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FIG. 1. Zero-shear relaxation time 7, (CJ) and plateau modulus

G, (@) as a function of temperature for a transient associative poly-
mer network at 25 g/L.
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FIG. 2. (Color online) Results from velocimetry measurements:
(a) and (b) fluid velocity profiles across the gap (x) of the couette
geometry, measured at 7=20 °C and (a) y7y=0.54 and (b) 0.74 for
a 30 g/L associative polymer solution (7y=18 ms); (c) transient
velocity measurements (y7,=0.54) for four positions in the gap;
(from top to bottom) (i) near the inner rotating cylinder (x
=1.9 mm), (ii) and (iii) close to the interface between the shear
bands (x=1.6 and 1.2 mm, respectively), and (iv) near the station-
ary outer wall (x=0.4 mm) [1].

rheological signature for shear banding, has been observed
before for similar telechelic polymers [7], and in a recent
paper we showed direct evidence for a shear-banded flow
[1]. Such behavior is not unique to this material; it is ob-
served in a wide variety of soft materials, such as solutions
of wormlike micelles, colloidal suspensions, and entangled
polymer solutions [2]. For our system, this plateau occurs at
shear rates y on the order of the reciprocal relaxation time 7.
Velocity profiles measured in this regime. [Figs. 2(a) and
2(b)] indeed show bands of different shear rate. The flow is
homogenous at lower shear rates, where the network can
easily adjust to the deformation, and at high-shear rates,
where the network structure is almost entirely disrupted [1].
A plateau in the stress is associated with a steady state, i.e.,
when the banding has fully developed. A metastable loop,
with a part where the stress is a decreasing function of shear
rate, underlies this steady state and can be probed by per-
forming rapid shear rate scans, as we have shown in [1].
These metastable loops were also previously observed by
others [6].

When the stress is measured as a function of time at a
constant applied shear rate in the shear banding regime, it
becomes clear that a true steady state is never reached: the
stress keeps undergoing persistent fluctuations (top panel
Fig. 4) The magnitude of these stress fluctuations, indicated
by the vertical bars in Fig. 3, is on the order of 10 Pa, much
larger than the experimental error (<0.1 Pa). Such large
fluctuations are only observed in the shear banding regime.

At first glance, the signal may appear to be chaotic. In-
deed the stresses display a normal distribution around their
average value [Fig. 5(a)] and the power spectrum [Fig. 5(b)]
of the raw stress signal shows no dominant frequencies. Cha-
otic stress responses have been studied in detail for solutions
of wormlike micelles [8,9].

In our case however, a distinct pattern appears when we
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FIG. 3. Dimensionless shear stress o/G versus dimensionless
shear rate 7, for a transient polymer network at 25 g/L at three
different temperatures (and thus three different relaxation times) (a)
5°C (19=72 ms), (b) 10 °C (7y=37 ms), and (c) 20 °C (7
=16 ms). The vertical bars indicate the range of stress fluctuations
for a given shear rate. The gray region indicates where shear band-
ing and fluctuating stresses are found.

zoom in on the signal (bottom panel Fig. 4). Periods of more
or less linear increase in the stress alternate with periods of
rapid decrease in the stress. This pattern is reminiscent of the
stick-slip motion of two bodies sliding past each other [10].
During a “stick phase” an elastic force builds up, which is
spontaneously released by a fracture that propagates between
the two bodies, giving rise to a slip motion. After a fracture
event, the bodies reconnect to start the stick motion again. A
well-known example of stick-slip motion is the movement of
tectonic plates in the earth’s crust, where intermittent stress
drops at the fault lines are responsible for earthquakes [11].

Velocimetry measurements (Fig. 2) in our system showed
no slip at either wall; the velocity close to both cylinder
walls is constant and equal to the velocity of the wall. In the
middle of the gap, however, we do observe significant veloc-
ity fluctuations [Fig. 2(c)] [1]. We argue therefore that the
intermittent behavior that we observe in the stress response is
due to repeated fracture-healing events in the material in the
region around the interface between the two shear bands.
During a healing stage structure builds up near the interface,
which leads to an effective growth of the low-shear band and
an increase in the stress. When the stress increases above a
certain level, the low-shear band may become unstable, lead-
ing to a fracture and a breakdown of the structure that was
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FIG. 4. (Color online) Typical transient stress response in the
banded regime, at a steady-shear rate of y7=1, measured at T
=10 °C (79=36 ms). Arrows in the bottom panel indicate the two
different events constituting the fracture-healing behavior; healing
(\) and fractures (). Note that at short time scales O(m,), at the
start-up of the shear flow, the stress shows an overshoot, which
is not visible here due to the longer sampling interval of 1 s
(z30 - T 0).

built up, with an associated drop in the stress. The repeated
growth and shrinkage of the low-shear band leads to the
large velocity fluctuations observed in the interfacial region
[Fig. 2(c)]. This might also be reflected in the fact that some
velocity profiles, often well inside the banded regime, dis-
play an irregular region in the center of the gap [Fig. 2(b)],
which we previously tentatively interpreted as a “third band”

[1].

5 L By o e = T LB
£ a E

o
T

Ty L - 3]
SR ﬁl;x 110! g
N 3 3
Ed \::&k 3 e
%01k » E
N 01 ot Ji0t
= b
0.0tExzzssr . hverrremededt B0 i i
-0.2 -0.1 0 0.1 0.2 107 1072 107!

o-o0 /o
avg g

10°

P(>A0)

10"

o0
|
T
wul
ey

10 | L
E A Y B N N
10" Ac(Pa) 107 0 200 400

602[ (Pa; 800‘

FIG. 5. (Color online) (a) Distributions of the relative fluctua-
tion in stress around their average. (b) Power spectra obtained by
Fourier transformation of the raw stress signal. (c) Cumulative dis-
tributions of the stress drop Ao of fractures. (d) Cumulative distri-
butions of the intervals Az between fractures; drawn lines are fits to
Poisson distributions. All for various shear rates and relaxation
times: y7p=1.0 and 7,=37 ms (i.e., 7=10 °C, @), y7,=1.6 and
7=37 ms (V¥), y75=2.0 and 7,=37 ms (A), y7y=1.0 and 7,
=96 ms (i.e., T=3 °C, +), and y75=1.0 and 7p=107 ms (i.e., T
=2 °C, #). Inset in (c) shows the dependence on the decay time 7;
for the interval distribution between fractures as a function of ap-
plied shear rate.
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Note that the localized and microscopic fractures that we
observe should not be confused with the macroscopic frac-
ture observed by Berret and Séréro [12] for fluorocarbon
telechelics. In contrast to what we find, these materials do
not heal after a microscopic fracture so that the fracture can
grow to macroscopic dimensions. This might be due to their
much longer microscopic relaxation time, i.e., up to 170
times larger than 7, of our material.

While chaos may seem to reign, the dynamics of stick-slip
processes are characterized by an underlying statistical pat-
tern [10]. In our case, the cumulative distribution of the total
stress drops Ao during a fracture [Fig. 5(c)] displays a char-
acteristic power-law behavior, P(>Ac)*Ao™®, limited for
small Ao by experimental noise. The exponent b=0.85 we
find is close to the value of 0.8 reported for true stick-slip
motion [10]. Attempts to explain such scaling behavior often
involve the concept of self-organized criticality [3].Accord-
ing to this theory, driven dissipative dynamical systems
spontaneously reach a critical state that is characterized by a
power-law distribution of events and power-law behavior in
the power spectrum of the fluctuations. Our material obeys
the same statistics.

An important aspect in the concept of self-organized criti-
cality is the robustness of the driven-critical state, while criti-
cal behavior in equilibrium systems is restricted to a specific
combination of the relevant parameters (temperature, pres-
sure, density, etc.). Self-organized critical systems reach the
critical state under a broad range of conditions. We find the
same robustness: the characteristic power-law behavior in
the stress fluctuations is found for a wide range of shear rates
and relaxation times (i.e., temperatures) (Fig. 3).

The power-law behavior in the distribution of fracture
moments is lost beyond amplitudes of roughly 10 Pa. For
larger amplitudes the distribution decays very rapidly. The
existence of such a cutoff implies that there is an upper limit
to the stress fluctuations, which is obviously related to the
bandwidth of the stress fluctuations in Fig. 4.

We find that banding consistently starts at 7%0.57‘51 and
leads to a stress plateau at 0=0.7G,, which could suggest
that the banding depends trivially on the plateau modulus
and relaxation time of these Maxwellian systems. Nonethe-
less, the magnitude of the stress fluctuations and the shear
rate range over which they occur show a nontrivial depen-
dence on relaxation time. By plotting the transient stress re-
sponse for the same system at the same dimensionless shear
rate measured at various temperatures (thus different values
of 7), we can clearly see that the magnitude (“bandwidth”)
of the fluctuations increases with increasing 7, (Fig. 6). In
the same way we observe that the shear rate range over
which these intermittent dynamics are found also increases
with 7, (shaded regions in Fig. 3).

In Fig. 7(b), the difference S between the maximum and
minimum stresses, relative to the average stress &, is plotted
as a function of the microscopic relaxation time. The limits
on the stress fluctuations can be explained on the basis of the
constitutive relation that underlies the shear banding behav-
ior, which was derived previously [1,6]. The principal ingre-
dient in this mean-field model is that flow enhances dissocia-
tion of the junctions. The reason for this is that the shear flow
leads to elongation of the bridging chains, resulting in an
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FIG. 6. (Color online) Transient stress responses, plotted as the
relative variations in stress around their average value, for four
different temperature (indicated in the plot in °C) at y75=1.

elastic pulling force on the junctions f=kgzT7y/& Here £ is
the typical dimension of a chain in the flow gradient direc-
tion (we use £=2.5 nm, estimated from the plateau modulus)
so that the stretching rate is roughly ¢ while the entropic
spring constant is kgT/&. 7 is the average lifetime of a junc-
tion, i.e., the typical time during which the chains are
stretched before they dissociate. The lifetime 7 is a function
of the shear rate. Assuming that junction dissociation is an
activated process, we can write

T=1Tyex (—f—5)=r ex (—@) (1)
0 €Xp ks T 0 €Xp A

giving an implicit equation for 7in which Jis the length over
which the force acts, i.e., the length of the alkyl tail (here
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FIG. 7. (a) Flow curves predicted by the microscopic constitu-
tive relation [Eq. (3)] for various relaxation times 7, (given in ms).
Inset illustrates the metastable loop (dotted line), the steady-state tie
line (horizontal plateau), and the definition of the predicted band-
width S. (b) Experimentally determined bandwidth of the stress
fluctuations, given as the difference between maximum and mini-
mum stresses, relative to the average stress ¢. Drawn line is the
prediction of our model. Note that the loop in the flow curve, and
with that the shear banding behavior, disappears for 7,<<0.02 s.
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6=1.8 nm). We simplify this by expanding the exponential,
which gives

70

T=E————. (2)
1+ 6'}”7'0/%

For small shear rates, y7y<<1, sticker dissociation is unaf-
fected by the shear rate, 7=~ 7;. For high-shear rates, y7,
>1, the average lifetime is equal to the time it takes to
stretch the chain so far that the force becomes kz7/ 6; i.e.,
7=/ 67Y.

As derived in [1], the steady-state concentration of
bridges can be written as n,=nK/(1+K), where n is the total
concentration of chains (loops and bridges) and K=k,/k,
=k,T, with k, and k, as the association and dissociation rates,
respectively. We assume that the equilibrium constant K|, in
rest is constant when 7, is varied (k,=K,/7), with K,=0.1
found from the experimentally determined ratio of bridges to
loops (results not shown). The shear stress is determined by
the number of active bridges and the average force per
bridge, which both depend on the shear rate as follows:

k,n7kgT
1+k,7

0 = Enpf + Mgy = 7( ) + Tefr Vs (3)
with 7.4 as the high-shear viscosity, corresponding to the
disrupted network (here 7.4=~0.5 Pas) and 7 is given by
Eq. (2). Note that Eq. (3) is not frame invariant. In Fig. 3(a),
this equation is plotted together with the experimental flow
curve. The model predicts a nonmonotonic stress-shear rate
relation.

The decreasing part of this curve is mechanically unstable
and corresponds to the regime where the shear banding and
the stress fluctuations are observed. Clearly, no matter how
the two shear bands arrange themselves, the stress in this
region is bounded by the maximum and the minimum in the
stress-shear rate curve. Our microscopic model predicts that
the loop becomes more pronounced if the microscopic relax-
ation time 7, increases [Fig. 7(a)], which is in good agree-
ment with the experimentally observed bandwidths of the
stress fluctuations [Fig. 7(b)].

The fact that the stress fluctuations are bounded by the
metastability in the constitutive relation is analogous to the
limitations on critical density fluctuations in equilibrium sys-
tems, which are bounded by the metastable van der Waals—
loop in the governing thermodynamic potential.

The “quiescent” intervals between two fracture events
show exponential (Poisson) distributions [Fig. 5(d)] and dis-
play a cutoff at long interval times that is related to the cutoff
in fracture magnitudes discussed above. The Poisson behav-
ior implies that the intermittent fracture events occurring at
different times are not correlated; in other words there is no
memory of past fracture events. The reason for this lack of
memory could be that the material quickly “heals” once a
fracture is terminated since the microscopic relaxation time
of the material is between 30 and 100 ms in this study, much
shorter than the typical time between fracture events.

The average interval time 7; between two fracture events
is on the order of 10—100 s. This is roughly a thousand times
longer than the microscopic relaxation time of the material,
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FIG. 8. Characteristic time interval 7; between fracture events as
a function of overall applied shear rate, from fitting a single expo-
nential decay to the data shown in Fig. 5(d), for 7=10 °C
(79=37 ms).

suggesting that the stress buildup is a process that involves
the creation of many junctions. As seen in Fig. 5(d), an in-
crease in the microscopic relaxation time (from 36 to 107
ms) leads to an increase in 7; (from 40 to 170 s). When the
formation of single connections is slowed down, the collec-
tive buildup process will also be slower. More counterintui-
tive is the observation that 7; increases linearly with the ap-
plied shear rate (Fig. 8), while the dynamics of most
processes are enhanced when the shear rate, and with that the
energy input into the system, is increased. The scenario that
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we propose is that the formation of new connections (asso-
ciation) across the gap is hindered by the velocity gradient
between two neighboring fluid elements, as the average con-
tact time between two nodes decreases.

In this paper we have presented observations of intermit-
tently patterned stress fluctuations in the steady-shear flow of
an apparently simple viscoelastic fluid. We hypothesize that
these are related to an indefinitely repeating microscopic
fracture and a self-healing behavior inside the liquid. This
seems to be consistent with previous interpretations of cha-
otic stress fluctuations in shear-banded materials as interfa-
cial instabilities [9,13]. Here we have shown however that,
while appearing chaotic at first sight, these fluctuations are
characterized by an underlying statistical pattern, which is
indicative of self-organized criticality. In analogy with criti-
cal fluctuations in equilibrium systems, we have shown that
the stress fluctuations accompanying this nonequilibrium
critical state are bounded by the metastable loop in the con-
stitutive relation that underlies the shear banding. This opens
up new possibilities as concepts known from the study of
equilibrium critical phenomena now can be employed to un-
derstand these nonequilibrium phase transitions.

The work of J.S. forms part of the research program of the
Dutch Polymer Institute (DPI) (Project No. 564).
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